
Fluctuations of Bacteriochlorophyll’s Positions in
B850 Ring from Photosynthetic Complex LH2
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Abstract— Interactions with environment have large
impact on the properties of light–harvesting (LH) pigment–
protein complexes. Some of these interactions could be
modeled by different types of static disorder. Fluctuations
of bacteriochlorophyll’s positions in B850 ring from LH2
complex of purple bacteria are investigated in present paper.
The nearest neighbour approximation model of the ring is
considered. Four modifications of such uncorrelated Gaussian
static disorder type (fluctuations of radial positions of
molecules on the ring, fluctuations of angular positions of
molecules on the ring, fluctuations of molecular positions
in perpendicular direction to the ring plane and fluctuations
of molecular positions in arbitrary direction) are taking into
account. The most important statistical properties of the
nearest neighbour transfer integral distributions for different
strengths of static disorder are calculated, discussed and
compared.

Keywords—LH2 complex, B850 ring, static disorder,
Hamiltonian, transfer integral distributions

I. INTRODUCTION

GREEN plants and certain other organisms (bacte-
ria, blue–green algae) are able to transform light

energy into chemical energy in the process which is
called photosynthesis. Light energy is captured dur-
ing this process and used for conversion of water,
carbon dioxide and minerals into energy–rich organic
compounds and (in most cases) oxygen. The process
of photosynthesis occurs in two stages. Photochemi-
cal reactions (i.e., light–capture) take place in the first
(light) stage. During this first stage, light is absorbed
and used for driving a series of electron transfers.
They result in synthesis of ATP and reduced form
of nicotine adenine dinucleotide phosphate (NADPH).
Second (dark) stage comprises chemical reactions
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controlled by enzymes. The ATP and NADPH formed in
the light–capturing reactions are used to reduce carbon
dioxide to organic carbon compounds [1].

Investigation of photosynthesis has been in the focus
of researchers for a long time. Our interest is mainly
focused on first (light) stage of photosynthesis in purple
bacteria. A complex system of membrane–associated
pigment–proteins (light–harvesting (LH) antenna) ab-
sorbs solar photons. Excitation energy (in the form
of Frenkel exciton) is very efficiently transferred to a
reaction center, where conversion of the light energy
into a chemical energy occurs [2]. The antenna systems
of photosynthetic complexes from purple bacteria are
formed by ring units LH1, LH2, LH3, and LH4. Their
geometric structures are known in great detail from X–
ray crystallography. All these light–harvesting complexes
have generally the same organization: cyclic repetition
of identical subunits in such a way that a ring–shaped
structure is formed. However the symmetries of these
rings are different.

The first description of crystal structure of LH2 com-
plex contained in purple bacterium Rhodopseudomonas
acidophila in high resolution was given by McDermott
et al. [3], then further e.g. by Papiz et al. [4]. The bac-
teriochlorophyll (BChl) molecules are organized in two
concentric rings. One ring (B850 ring) is composed of
eighteen closely packed BChl molecules with absorption
band at about 850 nm. Second ring (B800 ring) consists
of nine well–separated BChl molecules (B800) absorbing
around 800 nm. Dipole moments of BChl molecules
in LH2 complex have approximately tangential arrange-
ment. The whole LH2 complex consists of nine identical
subunits, it is nonameric. LH2 complexes from other
purple bacteria have analogous ring structure.

Other types of light–harvesting complexes such as the
B800–820 LH3 complex or LH4 complex can be also
found in some bacteria (LH3 in Rhodopseudomonas aci-
dophila strain 7050, LH4 in Rhodopseudomonas palus-
tris). They can differ in number of BChl molecules –
LH3 complex like LH2 one is usually nonameric but
LH4 complex is octameric (it consists of eight identi-
cal subunits). They have also different orientations of
molecular dipole moments. Therefore strengths of mutual
interactions between bacteriochorophylls are different
too. For instance, dipole moments of BChl molecules
in B–α/B–β ring from LH4 complex are oriented ap-
proximately radially to the ring. Interactions between the
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nearest neighbour bacteriochlorophylls in B–α/B–β ring
are approximately two times weaker in comparison with
B850 ring from LH2 complex and they have opposite
sign. LH4 complex also contains another BChl ring, i.e.
it consists of three Bchl rings [5].

The intermolecular distances under 1 nm determine
strong exciton couplings between corresponding pig-
ments. Therefore an extended Frenkel exciton states
model could be used in theoretical approach. At room
temperature the solvent and protein environment fluctu-
ates with characteristic time scales ranging from fem-
toseconds to nanoseconds. Fast fluctuations can be mod-
eled by dynamic disorder and slow fluctuations by static
disorder. Kumble and Hochstrasser [6] and Nagarajan et
al. [7], [8] studied static disorder effect on the anisotropy
of fluorescence for LH2 complexes. We extended these
investigations by consideration of dynamic disorder. This
effect was studied by us for simple model systems [9]–
[11] and then for models of B850 ring (from LH2) [12],
[13]. Various types of uncorrelated static disorder (in
local excitation energies, in transfer integrals, etc.) and
correlated one (e.g., elliptical deformation) were used
in the past [14]–[16] and also different arrangements
of optical dipole moments were compared [17]–[20].
Recently we have focused on the modeling of absorption
and steady state fluorescence spectra of LH2 and LH4
complexes within the nearest neighbour approximation
model [21]–[25]. We have also extended our model to
full Hamiltonian model and published the results for
different types of static disorder [26]–[34].

Main goal of the present paper is the investigation
of the nearest neighbour transfer integral distributions
for various types of static disorder and comparison of
their influence on Hamiltonian of B850 ring from LH2
complex. The rest of the paper is structured as fol-
lows. Section II introduces the ring model with different
types and modifications of static disorder. Used units
and parameters could be found in Section III. Results
are presented and discussed in Section IV and some
conclusions are drawn in Section V.

II. MODEL

The Hamiltonian of an exciton on molecular ring, e.g.
B850 ring from LH2 complex, reads

H = H0
ex +Hs +Hph +Hex−ph. (1)

The first term, H0
ex, describes an exciton on the ideal

ring, i.e. without any disorder. The second term, Hs,
corresponds to static disorder and the third and fourth
terms, Hph and Hex−ph, represents dynamic disorder,
i.e. phonon bath and exciton–phonon interaction. We
consider only static disorder in this paper.

A. Ideal ring
Hamiltonian of an exciton on the ideal ring reads

H0
ex =

N∑
m=1

E0
ma
†
mam +

N∑
m,n=1(m6=n)

J0
mna

†
man. (2)

a†m (am) are creation (annihilation) operators of an
exciton at site m, E0

m is the local excitation energy of m–
th molecule, J0

mn (for m 6= n) is the so–called transfer
integral between sites m and n. N is the number of
molecules in the ring (N = 18 for B850 ring form LH2
complex). Local excitation energies E0

m are the same for
all bacteriochlorophylls on unperturbed ring, i.e.

E0
m = E0, m = 1, . . . , N.

The interaction strengths between the nearest neighbour
bacteriochlorophylls inside one subunit and between
subunits are almost the same in B850 ring from LH2
complex (see Figure 1 (B) in [5]). That is why such ring
can be modeled as homogeneous case,

J0
mn = J0

m+i,n+i. (3)

In dipole–dipole approximation, transfer integrals Jmn
can be written as

Jmn =
~dm · ~dn
|~rmn|3

− 3

(
~dm · ~rmn

) (
~dn · ~rmn

)
|~rmn|5

=

= |~dm||~dn|
cosϕmn − 3 cosϕm cosϕn

|~rmn|3
. (4)

Here ~dm and ~dn are local dipole moments of m–th and
n–th molecule respectively, ~rmn is the vector connecting
m–th and n–th molecule and ϕm (ϕn) is the angle
between ~dm (~dn) and ~rmn. The angle between m–th
and n–th vector of local dipole moment (~dm, ~dn) is
referred to as ϕmn. Geometric arrangement of the ring
has to correspond with the interaction strengths between
the nearest neighbour bacteriochlorophylls. That is why
distances rm,m+1 of neighbouring molecules in B850
ring from the LH2 complex have to be the same (without
any disorder) and angles βm,m+1 have to be the same too
(βm,m+1 = 2π/18, see Figure 1).

In what follows we consider the nearest neighbour
approximation model, i.e. only the nearest neighbour
transfer matrix elements are nonzero. In this case we
have

J0
mn = J0(δm,n+1 + δm,n−1). (5)

The pure exciton Hamiltonian H0
ex can be diagonalized

using the wave vector representation with correspond-
ing delocalized Bloch states α and energies Eα. Using
Fourier transformed excitonic operators aα, the Hamil-
tonian in α–representation reads

H0
ex =

N∑
α=1

Eαa
†
αaα. (6)
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Fig. 1. Geometric arrangement of ideal B850 ring from LH2 complex
(without any fluctuations)

The form of operators aα is

aα =
N∑
n=1

aneiαn, α =
2π

N
l, l = 0, . . . ,±N

2
, (7)

and the simplest exciton Hamiltonian for B850 ring from
LH2 complex in α–representation is given by Eq. (6)
with

Eα = E0 − 2J0 cosα. (8)

B. Static disorder
As concerns static disorder (second term in Eq. (1)), we

can model it as fluctuations in local excitation energies
of bacteriochlorophylls δεm,

Em = E0 + δεm, (9)

or fluctuations in transfer integrals δJmn (m 6= n),

Jmn = Jnm = J0
mn + δJmn. (10)

δJmn can be treated as uncorrelated Gaussian fluctu-
ations (with the standard deviation ∆J ). Better way
for modeling of δJmn is to connect these fluctuations
with disorder in geometric arrangement of the ring.
Deviations of ring geometry can be consider in two ways
– fluctuations in molecular positions or fluctuations in
molecular dipole moment orientations. In the present
paper we investigate only the first one, i.e. deviations
of molecular positions.

If the positions of molecules are changed in the plane
of the ideal ring, than following types of geometric
deviations can be considered:

a) uncorrelated fluctuations of radial positions of
molecules δrm on the ring (Gaussian distribution
and standard deviation ∆r),

rm = r0 + δrm, (11)

where r0 is the radius of the ideal ring without any
disorder (see Figure 2);

Fig. 2. B850 ring from LH2 complex – fluctuations in radial
positions of bacteriochlorophylls δrm

b) uncorrelated fluctuations of angular positions of
molecules δνm on the ring (Gaussian distribution
and standard deviation ∆ν),

νm = ν0m + δνm, (12)

where ν0m is the angular position of m–th bacte-
riochlorophyll on the ring, directions of bacteri-
ochlorophyll dipole moments in new positions are
unchanged (see Figure 3).

Fig. 3. B850 ring from LH2 complex – fluctuations in angular
positions of bacteriochlorophylls δνm

If the positions of molecules are changed out of the
plane of ideal ring we have:

c) uncorrelated fluctuations of molecular positions δzm
– fluctuations occur only in perpendicular direction
to the ring plane (Gaussian distribution and standard
deviation ∆z),

zm = δzm. (13)

Here zm determines the distance of m–th bacteri-
ochlorophyll molecule from the plane of ideal ring.

Previous three types are included in more general type
of geometric disorder:

d) uncorrelated fluctuations of molecular positions in
arbitrary direction δ~rm,

~rm = ~r0m + δ~rm.
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Here ~rm denotes position vector of m–th molecule
and ~r0m is position vector of m–th molecule on
unperturbed ring. The distributions of molecular
distances from positions on unperturbed ring are
supposed to be uncorrelated with Gaussian distri-
bution and standard deviation ∆ρ and distributions
in directions of molecular shifts are supposed to be
uncorrelated and uniform.

Due to the consideration of dipole–dipole approxi-
mation the connection between disorder in geometric
arrangement and in transfer integrals is given by Eq. (4).

III. UNITS AND PARAMETERS

Dimensionless energies normalized to the transfer in-
tegral Jm,m+1 = J0 (see Eq. (5)) have been used in our
calculations. Estimation of J0 varies in literature between
250 cm−1 and 400 cm−1.

In our previous investigations [35] we found from com-
parison with experimental results for B850 ring from the
LH2 complex [36] that the possible strength ∆J of the
uncorrelated Gaussian static disorder in transfer integrals
δJmn is approximately ∆J ≈ 0.15 J0. The strengths of
above mentioned types of static disorder in ring geometry
is taken in connection with the strength ∆J . That is
why for our types of static disorder we have taken the
strengths in following intervals:

a) uncorrelated fluctuations of radial positions of
molecules δrm

∆r ∈ 〈0.02 r0, 0.30 r0〉,

b) uncorrelated fluctuations of angular positions of
molecules δνm

∆ν ∈ 〈0.001 π, 0.022 π〉,

c) uncorrelated fluctuations of molecular positions δzm
– fluctuations occur only in perpendicular direction
to the ring plane

∆z ∈ 〈0.02 r0, 0.30 r0〉,

d) uncorrelated fluctuations of molecular positions in
arbitrary direction δ~rm

∆ρ ∈ 〈0.02 r0, 0.30 r0〉.

In all cases calculations were done for 10000 realizations
of static disorder.

IV. RESULTS AND DISCUSSION

Various types of static disorder connected with fluctua-
tions in ring geometry and their influence on Hamiltonian
of B850 ring from LH2 complex (namely on the nearest
neighbour transfer integrals) are investigated in present
paper. Distributions of the nearest neighbour transfer in-
tegrals Jm,m+1 were calculated for above mentioned four

modifications of static disorder. These distributions are
graphically presented by contour plots and also by line
plots. Contour plots also contain values of E(Jm,m+1)

and E(Jm,m+1) ±
√
D(Jm,m+1). Here E(Jm,m+1) is

sample expected value,

E(Jm,m+1) =
1

n

n∑
i=1

Jm,m+1, (14)

and
√
D(Jm,m+1) is sample standard deviation,

√
D(Jm,m+1) =

√
1

(n− 1)
M2. (15)

Additionally, we calculated sample skewness α3,

α3 =
n

5

2

(n− 1)(n− 2)

M3

M
3

2

2

, (16)

and sample kurtosis α4,

α4 =
n2

(n− 2)(n− 3)

[
n(n+ 1)

n− 1

M4

M2
2

− 3

]
. (17)

Here

Mk =
n∑
i=1

[Jm,m+1 − E(Jm,m+1)]
k (18)

and n is the number of cases in our samples
(n = 180000). It corresponds with dimension of Hamil-
tonian (N = 18) and number of static disorder realiza-
tions (10000). For more detailed comparison of different
static disorder modifications also sample coefficient of
variation c was calculated,

c =
√
D(Jm,m+1)/E(Jm,m+1). (19)

Distributions of the nearest neighbour transfer integrals
Jm,m+1 for above mentioned types of static disorder are
presented in Figure 4 – Figure 7. Figure 4 shows the
distributions of Jm,m+1 for Gaussian uncorrelated static
disorder δrm in radial positions of molecules on the
ring. The distributions of Jm,m+1 for other three above
mentioned types of static disorder can be seen in Figure 5
(Gaussian uncorrelated fluctuations of angular positions
of molecules on the ring δνm), in Figure 6 (uncorrelated
fluctuations of molecular positions δzm) and in Figure 7
(uncorrelated fluctuations of molecular positions δ~rm in
arbitrary direction). For static disorder in ring geometry
expected value E(Jm,m+1) depends on static disorder
strength. Dependencies of E(Jm,m+1) and

√
D(Jm,m+1)

on corresponding static disorder strength are also pre-
sented in Figure 4 – left column (δrm), Figure 5 – left
column (δνm), Figure 6 – left column (δzm) and Figure 7
– left column (~rm). Values of E(Jm,m+1),

√
D(Jm,m+1),

α3, α4 and c (see Eq. (14) – Eq. (19)) for chosen static

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 384



Fig. 4. Distributions of the nearest neighbour transfer integrals Jm,m+1 for B850 ring from LH2 complex – uncorrelated fluctuations δrm in
radial positions of molecules on the ring (Gaussian distribution and standard deviation ∆r , strengths of static disorder ∆r ∈ 〈0.02 r0, 0.30 r0〉)

∆r expected value standard deviation skewness kurtosis coefficient of variation
E(Jm,m+1)

√
D(Jm,m+1) α3 α4 c

0.02 r0 0.999 J0 0.012 J0 0.083 0.030 0.012
0.06 r0 0.988 J0 0.040 J0 -0.034 0.506 0.040
0.10 r0 0.967 J0 0.075 J0 -0.309 1.230 0.078
0.14 r0 0.939 J0 0.118 J0 -0.447 1.446 0.125
0.18 r0 0.907 J0 0.163 J0 -0.434 1.277 0.179
0.22 r0 0.872 J0 0.208 J0 -0.327 1.031 0.238
0.26 r0 0.836 J0 0.252 J0 -0.165 0.890 0.301
0.30 r0 0.800 J0 0.293 J0 0.024 0.903 0.366

TABLE I
EXPECTED VALUE, STANDARD DEVIATION, SKEWNESS, KURTOSIS AND COEFFICIENT OF VARIATION FOR THE NEAREST NEIGHBOUR

TRANSFER INTEGRAL Jm,m+1 DISTRIBUTIONS OF UNCORRELATED GAUSSIAN FLUCTUATIONS δrm IN RADIAL POSITIONS OF
MOLECULES ON THE RING (EIGHT STRENGTHS ∆r )

disorder strengths are presented in Table I (δrm), Table II
(δνm), Table III (δzm) and Table IV (δ~rm).

In case of Gaussian distribution of transfer integrals
Jm,m+1 expected value E(Jm,m+1) is independent of
static disorder strength (E(Jm,m+1) = J0) and standard
deviation

√
D(Jm,m+1) equals the strength of static

disorder
√
D(Jm,m+1) = ∆J . That is why, coefficient

of variation c corresponds to relative strength of static
disorder, i.e. c = ∆J/J0 (see Eq. (19)). In this case
skewness α3 and kurtosis α4 equal zero, i.e. they are
also independent of static disorder strength ∆J .

At the present paper we consider only types of

static disorder connected with deviations in positions
of molecules (δrm, δνm, δzm and δ~rm). In all these
cases Gaussian distribution of molecular positions re-
sults in non–Gaussian distribution of transfer integrals
Jm,m+1. Therefore expected value E(Jm,m+1), skew-
ness α3 and kurtosis α4 are nonconstant and standard
deviation

√
D(Jm,m+1) does not equal the strength of

static disorder (see Figures 4 – 7 and Tables I – IV). As
concerns expected value E(Jm,m+1), we can see increase
of it for increasing static disorder strength in case of
fluctuations δνm in angular positions of molecules on
the ring (see Figure 5 and Table II). On the other hand,
E(Jm,m+1) decreases with growing strength of static
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Fig. 5. Distributions of the nearest neighbour transfer integrals Jm,m+1 for B850 ring from LH2 complex – uncorrelated fluctuations
δνm in angular positions of molecules on the ring (Gaussian distribution and standard deviation ∆ν , strengths of static disorder ∆ν ∈
〈0.001 π, 0.022 π〉)

∆ν expected value standard deviation skewness kurtosis coefficient of variation
E(Jm,m+1)

√
D(Jm,m+1) α3 α4 c

0.001 π 1.000 J0 0.012 J0 0.042 0.004 0.012
0.004 π 1.002 J0 0.049 J0 0.189 0.065 0.049
0.007 π 1.005 J0 0.086 J0 0.339 0.211 0.086
0.010 π 1.010 J0 0.124 J0 0.494 0.455 0.123
0.013 π 1.017 J0 0.164 J0 0.657 0.815 0.162
0.016 π 1.026 J0 0.206 J0 0.834 1.327 0.201
0.019 π 1.037 J0 0.251 J0 1.018 1.959 0.242
0.022π 1.050 J0 0.298 J0 1.164 2.348 0.284

TABLE II
EXPECTED VALUE, STANDARD DEVIATION, SKEWNESS, KURTOSIS AND COEFFICIENT OF VARIATION FOR THE NEAREST NEIGHBOUR

TRANSFER INTEGRAL Jm,m+1 DISTRIBUTIONS OF UNCORRELATED GAUSSIAN FLUCTUATIONS δνm IN ANGULAR POSITIONS OF
MOLECULES ON THE RING (EIGHT STRENGTHS ∆ν )

disorder in all other types of fluctuations (δrm – see
Figure 4 and Table I, δzm – see Figure 6 and Table III and
δ~rm – see Figure 7 and Table IV). The most important
change of expected value occurs in case of fluctuations
δrm in radial positions of molecules and fluctuations δzm
of molecular positions in perpendicular direction to the
ring plane. In contrast with these types of static disorder
the changes of E(Jm,m+1) are low for fluctuations δνm
in angular positions of molecules and fluctuations δ~rm
of molecular positions in arbitrary direction.

In all four types of static disorder dependence of stan-
dard deviation

√
D(Jm,m+1) on static disorder strength

is nonlinear. The value of standard deviation does not
exceed 0.3 J0 for static disorder types a), b) and c) (δrm,
δνm and δzm) for the highest strength of corresponding
static disorder. On the other hand, in case of static
disorder type d) (δ~rm) standard deviation grows up much
more and its value almost approaches the value of the
nearest neighbour transfer integral in the ideal ring, i.e.√
D(Jm,m+1) ≈ 1.0 J0. This leads us to the conclusion

that the strengths ∆ρ > 0.15 r0 are unrealistic for
this type of static disorder. Such strengths ∆ρ give also
disproportionately high values of skewness and kurtosis
(see Table IV).
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Fig. 6. Distributions of the nearest neighbour transfer integrals Jm,m+1 for B850 ring from LH2 complex – uncorrelated fluctuations δzm
in molecular positions – fluctuations occur only in perpendicular direction to the ring plane (Gaussian distribution and standard deviation ∆z ,
strengths of static disorder ∆z ∈ 〈0.02 r0, 0.30 r0〉)

∆z expected value standard deviation skewness kurtosis coefficient of variation
E(Jm,m+1)

√
D(Jm,m+1) α3 α4 c

0.02 r0 0.998 J0 0.002 J0 -2.796 11.512 0.002
0.06 r0 0.987 J0 0.018 J0 -2.627 9.781 0.019
0.10 r0 0.965 J0 0.047 J0 -2.356 7.344 0.049
0.14 r0 0.935 J0 0.083 J0 -2.056 5.080 0.089
0.18 r0 0.899 J0 0.121 J0 -1.769 3.295 0.134
0.22 r0 0.861 J0 0.158 J0 -1.511 1.974 0.183
0.26 r0 0.821 J0 0.192 J0 -1.284 1.015 0.234
0.30 r0 0.781 J0 0.222 J0 -1.086 0.317 0.284

TABLE III
EXPECTED VALUE, STANDARD DEVIATION, SKEWNESS, KURTOSIS AND COEFFICIENT OF VARIATION FOR THE NEAREST NEIGHBOUR

TRANSFER INTEGRAL Jm,m+1 DISTRIBUTIONS FOR UNCORRELATED GAUSSIAN FLUCTUATIONS IN MOLECULAR POSITIONS δzm –
FLUCTUATIONS OCCUR ONLY IN PERPENDICULAR DIRECTION TO THE RING PLANE (EIGHT STRENGTHS ∆z )

Non–Gaussian distributions of Jm,m+1 manifest them-
selves by nonzero skewness and kurtosis in all four
cases of static disorder connected with deviations in
ring geometry. Skewness is negative for static disorder
δrm in radial positions of molecules and static disorder
δzm in molecular positions in perpendicular direction
to the ring plane. Contrary, in case of static disorder
δνm in angular positions of molecules and static disorder
δ~rm in molecular positions in arbitrary direction the
distribution of Jm,m+1 is skewed to the right hand side.
Most significant skewness can be seen in fourth type of
static disorder – fluctuations δ~rm of molecular positions

in arbitrary direction (Figure 7 and Table IV).

Due to nonconstant expected value, influences of dif-
ferent types of fluctuations to distribution of Jm,m+1

can be compared using coefficient of variation. Our
previous investigations [35] led to suitable strength of
static disorder in transfer integrals ∆J ≈ 0.15 J0 and
consequently c ≈ 0.15. As concerns other types of static
disorder, approximately same value of coefficient of
variation corresponds to the following disorder strengths:
∆r ≈ 0.16 r0, ∆ν ≈ 0.012π, ∆z ≈ 0.20 r0 and
∆ρ ≈ 0.09 r0.
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Fig. 7. Distributions of the nearest neighbour transfer integrals Jm,m+1 for B850 ring from LH2 complex – uncorrelated fluctuations δ~rm of
molecular positions in arbitrary direction (Gaussian distribution and standard deviation ∆ρ, strengths of static disorder ∆ρ ∈ 〈0.02 r0, 0.30 r0〉)

∆ρ expected value standard deviation skewness kurtosis coefficient of variation
E(Jm,m+1)

√
D(Jm,m+1) α3 α4 c

0.02 r0 0.999 J0 0.034 J0 0.224 1.959 0.034
0.06 r0 0.997 J0 0.103 J0 0.694 2.953 0.103
0.10 r0 0.991 J0 0.175 J0 1.248 5.644 0.176
0.14 r0 0.983 J0 0.252 J0 2.021 13.038 0.257
0.18 r0 0.972 J0 0.341 J0 3.473 43.644 0.351
0.22 r0 0.960 J0 0.453 J0 7.192 216.533 0.472
0.26 r0 0.946 J0 0.607 J0 16.872 1122.938 0.642
0.30 r0 0.931 J0 0.963 J0 53.337 7706.209 1.034

TABLE IV
EXPECTED VALUE, STANDARD DEVIATION, SKEWNESS, KURTOSIS AND COEFFICIENT OF VARIATION FOR THE NEAREST NEIGHBOUR
TRANSFER INTEGRAL Jm,m+1 DISTRIBUTIONS FOR UNCORRELATED GAUSSIAN FLUCTUATIONS δ~rm OF MOLECULAR POSITIONS IN

ARBITRARY DIRECTION (EIGHT STRENGTHS ∆ρ)

V. CONCLUSIONS

Comparison of the results obtained within different
types of static disorder connected with fluctuations in
molecular positions can be summarized as follows. Ex-
pected value of the nearest neighbour transfer inte-
gral distribution depends on static disorder strength for
all presented types of fluctuations. The most essential
change appears in case of static disorder in radial po-
sitions of molecules and static disorder in molecular
positions in perpendicular direction to the ring plane.
The dependence of standard deviation of the nearest
neighbour transfer integral distribution on the static dis-
order strength shows the highest nonlinearity in case

of static disorder in positions of molecules in arbitrary
direction. This is connected with the highest skewness
and kurtosis of this distribution. It leads to elimination of
static disorder strength higher then 0.15 r0 for this type
of static disorder. Through the comparison of coefficient
of variation we are able to estimate suitable strength
of static disorder types connected with fluctuations in
molecular positions.

REFERENCES

[1] D. W. Lawlor, Photosynthesis, Spriger, New York 2001.
[2] R. van Grondelle and V. I. Novoderezhkin, Energy transfer in photo-

synthesis: experimental insights and quantitative models, Phys. Chem.
Chem. Phys. 8, 2003, pp. 793–807.

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 10, 2016

ISSN: 1998-0159 388



[3] G. McDermott, et al., Crystal structure of an integral membrane light-
harvesting complex from photosynthetic bacteria, Nature 374, 1995, pp.
517–521.

[4] M. Z. Papiz, et al., The structure and thermal motion of the B 800-B850
LH2 complex from Rps. acidophila at 2.0 A resolution and 100 K: new
structural features and functionally relevant motions, J. Mol. Biol. 326,
2003, pp. 1523–1538.

[5] W. P. F. de Ruijter, et al., Observation of the Energy–Level Structure
of the Low–Light Adapted B800 LH4 Complex by Single–Molecule
Spectroscopy, Biophys. J. 87, 2004, pp. 3413–3420.

[6] R. Kumble and R. Hochstrasser, Disorder–induced exciton scat-
tering in the light–harvesting systems of purple bacteria: Influ-
ence on the anisotropy of emission and band → band transitions,
J. Chem. Phys. 109, 1998, pp. 855–865.

[7] V. Nagarajan, et al., Femtosecond pump–probe spectroscopy of the B850
antenna complex of Rhodobacter sphaeroides at room temperature,
J. Phys. Chem. B 103, 1999, pp. 2297–2309.

[8] V. Nagarajan and W. W. Parson, Femtosecond fluorescence depletion
anisotropy: Application to the B850 antenna complex of Rhodobacter
sphaeroides, J. Phys. Chem. B 104, 2000, pp. 4010–4013.
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[11] P. Heřman, I. Barvı́k and M. Urbanec, Energy relaxation and transfer
in excitonic trimer, J. Lumin. 108, 2004, pp. 85–89.
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[26] P. Heřman, D. Zapletal and M. Horák, Emission spectra of LH2
complex: full Hamiltonian model, Eur. Phys. J. B 86, 2013, art. no.
215.
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